

Application Note

Using the Z8 MCU as an I2C
Bus Master

AN003601-Z8X1199
ZILOG WORLDWIDE HEADQUARTERS ¥ 910 E. HAMILTON AVENUE ¥ CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 ¥ FAX: 408.558.8300 ¥ WWW.ZILOG.COM

Application Note
Using the ZiLOG Z8 MCU as an I2C Bus Master

This publication is subject to replacement by a later edition. To determine whether a later edition
exists, or to request copies of publications, contact:

ZiLOG Worldwide Headquarters
910 E. Hamilton Avenue
Campbell, CA 95008
Telephone: 408.558.8500
Fax: 408.558.8300
www.ZiLOG.com

Windows is a registered trademark of Microsoft Corporation.

Information Integrity

The information contained within this document has been verified according to the general
principles of electrical and mechanical engineering. Any applicable source code illustrated in the
document was either written by an authorized ZiLOG employee or licensed consultant. Permission
to use these codes in any form, besides the intended application, must be approved through a
license agreement between both parties. ZiLOG will not be responsible for any code(s) used
beyond the intended application. Contact the local ZiLOG Sales Office to obtain necessary license
agreements.

Document Disclaimer

© 2000 by ZiLOG, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be
superseded. ZiLOG, INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A
REPRESENTATION OF ACCURACY OF THE INFORMATION, DEVICES, OR TECHNOLOGY
DESCRIBED IN THIS DOCUMENT. ZiLOG ALSO DOES NOT ASSUME LIABILITY FOR
INTELLECTUAL PROPERTY INFRINGEMENT RELATED IN ANY MANNER TO USE OF
INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. Except
with the express written approval ZiLOG, use of information, devices, or technology as critical
components of life support systems is not authorized. No licenses or other rights are conveyed,
implicitly or otherwise, by this document under any intellectual property rights.
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

AN003601-Z8X1199

iii

Table of Contents

General Overview . 4

Discussion . 4
I

2

C Bus Overview . 4
24Cxxx Serial EEPROM Overview . 5
Z8 MCU Interface to 24Cxxx EEPROM . 9

Summary . 10

Technical Support . 11
Source Code . 11
Flowcharts . 19

Test Procedure . 23
Equipment Used . 23
General Test Setup and Execution . 23
Test Results . 24

References . 24

Acknowledgements

Project Lead Engineer

Jon Veres

Application and Support Engineers

Denny Hopp
Oscar Miramontes
J.R. Wang

System and Code Development

Jon Veres

Application Note
Using the Z8 MCU as an I

2

C Bus Master

4

Using the Z8 MCU as an I2C Bus Master

General Overview
The ZiLOG Z8 family features many integrated features that simplify system
design requirements in embedded applications. These on-chip peripheral features
include Power-On Reset (POR), Low Voltage Protection, Watch-Dog Timer
(WDT), programmable I/O, comparators, multiple timer/counters (including exter-
nal event counting and output waveform generation), and multiple external/inter-
nal interrupts. Some applications, however, may require additional external
peripheral support, such as an I/O expander, specialty memory, LCD driver, or
Analog-to-Digital (A/D) converter. To provide a standardized peripheral bus con-
nection, a simple bi-directional two-wire serial interface called the Inter-IC or I2C
bus can be used. While many Z8 MCU family members do not possess dedicated
on-chip I2C support hardware, this serial bus can be simulated by software control
of two Z8 MCU I/O pins.

This application note provides an overview of the I2C bus interface and the
24Cxxx EEPROM family, and details an application interfacing the Z8 MCU (I2C
Master) to a two-wire 24Cxxx EEPROM (I2C Slave).

Discussion

I2C Bus Overview

The I2C bus uses a two-wire interface consisting of a serial data line (SDA) and a
serial clock line (SCL) to exchange information between devices connected to the
bus. Each device on the bus has its own unique address and can operate as a
transmitter or receiver (depending on its particular function). Devices are further
characterized as Masters or Slaves. A Master is defined as a device that initiates,
controls (generates all framing and clock signals), and terminates a transfer. A
Slave is defined as any device addressed by a Master. Multiple Masters are
allowed by I2C bus specifications because a bus arbitration and clock synchroni-
zation scheme is defined so that messages are not corrupted when more than
one device attempts to take Master control. This procedure is also facilitated
because all connections to the bus are wired-AND connections. Both the SDA
and SCL lines are bi-directional and are pulled up to the positive logic supply rail
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I

2

C Bus Master

5

(via pull-up resistors, both lines high for the bus idle state). When in the output
mode, the SDA and SCL lines are open drain or open collector. Data is
exchanged eight bits at a time and can be transferred at rates up to 100K bits/sec
(STANDARD mode) or 400 kbits/sec (fast mode).

Data transfers on the I2C bus are controlled (and framed) via two unique bus
states generated by the Bus Master. These bus states are the START and STOP
bit conditions. A START condition is defined as a High-to-Low level transition on
SDA while the SCL line is High. A STOP condition is defined as a Low-to-High
level transition on SDA while the SCL line is High. Data must always be valid (sta-
ble) on the SDA line while SCL is high. The SDA line is only allowed to change
during the SCL Low period. One bit of data is transmitted for each SCL period

 Following the START condition, the first 8-bit byte sent in a bus message is a 7-
bit Slave address field along with a data direction or R/W bit. (This discussion is
limited to the I2C 7-bit addressing mode.) The data direction bit (least significant
bit) controls whether or not the Master transmits (0 = write) or receives (1 = read)
data from the addressed Slave. For every 8-bit byte exchanged, the most signifi-
cant bit is always transmitted first. All 8-bit byte bus transactions (whether
address, data, and so on) are followed by an acknowledge bit. The acknowledge
bit is a low-level signal placed on the SDA line by the receiving device (Master or
Slave) during the Master-transmitted acknowledge clock pulse (ninth High SCL
clock pulse of the byte transmission). If the receiver is unable to receive data
(busy Slave receiver) or must signal the end of data condition (Master receiver), a
non-acknowledge is sent (SDA High during the ninth High SCL clock pulse time).
Following the START and Slave address transmission, data is exchanged
between the Master and receiver as required. Upon exchange of the final byte
and its acknowledge, the Master issues the STOP condition to end bus usage.

The previous general overview of I2C bus operation provides the foundation nec-
essary to proceed with a serial EEPROM interface (a working knowledge of the
I2C 7-bit addressing mode). See the I2C Bus Specifications published by Phillips
Corporation for complete details of all the various modes this bus supports.

24Cxxx Serial EEPROM Overview

The 24Cxxx Family of two-wire serial EEPROM devices provide 256 to 2K
(24C01A to 24C16) bytes of non-volatile storage and are I2C bus compatible.
Figure 1 illustrates the standard 8-pin PDIP package pin-out.
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I

2

C Bus Master

6

In addition to SDA and SCL, device control pins include:

¥ WP: Write Protect Input. When this pin is grounded, normal read/write
EERPOM accesses are permitted. When connected to Vcc, the EEPROM is
write-protected

¥ A2, A1, A0: Device Address Inputs. All Ax address pins are hard-wired to fix
the device's programmable software address

Data is exchanged with the 24Cxxx as a standard I2C bus Slave device. After the
START command, the first byte transmitted is the EEPROM's address byte. The
upper nibble identifies the device as memory (per the I2C specification). The lower
nibble selects which 24Cxxx is targeted for exchange (Ax, up to eight devices may
be on the bus) and/or which internal 256-byte block in the EEPROM (Px).Table 1
contains address byte definitions.

Figure 1. 24Cxxx EEPROM Pin-Out

Table 1. 24Cxx Device Name and Address Byte Definition

Device Bytes Max # Devices Page Write Device Address Byte

24C01A 128 8 8 1010 A2 A1 A0 R/W

24C02 256 8 8 1010 A2 A1 A0 R/W

24C04 512 4 16 1010 A2 A1 P0 R/W

24C08 1K 2 16 1010 A2 P1 P0 R/W

24C16 2K 1 16 1010 P2 P1 P0 R/W

Note: R/W: 0 = Write, 1 = Read. Ax = Hard-wired device address. Px = Internal software
address (selects the 256-byte block to address).

A0

A1

A2

GND

Vcc

WP

SCL

SDA

8-pin
DIP

1

2

3

4

8

7

6

5

AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I

2

C Bus Master

7

After the device address is transmitted, the desired 8-bit EEPROM word address
is sent. Now, the desired device operation (read or write) is carried out.

Two types of write operations (byte and page) are supported (Figure 2). Byte
operations allow a random EEPROM address to be written. Byte write operations
require transmission of the following:

¥ START condition (Master)

¥ EEPROM Device Address with R/W Bit = 0 (Master)

¥ Acknowledge Bit (EEPROM)

¥ Target EEPROM Word Address to be Written (Master)

¥ Acknowledge Bit (EEPROM)

¥ Data Byte to be Written (Master)

¥ Acknowledge bit (EEPROM)

¥ STOP Condition (Master)

Upon detecting the STOP bit, the EEPROM enters an internally timed write cycle
to non-volatile memory. During this write cycle, all EEPROM inputs are disabled
and the device responds to further bus activity until the write is complete. The
Master device features two ways to determine when the EEPROM internal write
cycle is completed: 1) timeout the maximum required write time (usually much
longer than the device actually requires) or 2) perform an acknowledge poll, which
is the more time-efficient way. The poll involves sending a start condition followed
by the target EEPROM address. If the EEPROM acknowledges its address, the
device write cycle is complete and the Master's desired operation may continue
(otherwise, polling must be continued).

Page write operations are identical to the byte write operations described previ-
ously, except that instead of writing one data byte, as many as 8 or 16 bytes (up to
the maximum page write size the EEPROM supports) may be sent between the
EEPROM address and STOP bit transmission. See Table 1 and Figure 2. During
these page writes, the EEPROM automatically increments its internal address
pointer between bytes.

Figure 2. Write Operations (Byte/Page)

start

lsb r/w

write

ack

*
ack ack

stop

msb

SDA Line

Device Address Word Address Data (n bytes)
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I

2

C Bus Master

8

Note: If the device's maximum page number address is exceeded, the data
writes wrap around.

When the STOP condition is received, the updated bytes are written to the non-
volatile array. The great advantage of the page write feature is that only one write
cycle timing is consumed to write multiple bytes of data.

Three types of read operations are supported: Current Address, Random, and
Sequential Read. Read operations begin just like write operations, except that the
R/W bit is set to 1 for the device address byte.

For the CURRENT ADDRESS READ mode, no EEPROM byte address is written
as the data transmitted by the addressed Slave to the Master is read from the
location of the most recent access (incremented by one). This read transmission
type sequence appears as:

¥ START condition (Master)

¥ EEPROM device address with R/W bit = 1 (Master)

¥ Acknowledge bit (EEPROM)

¥ Data byte to be read (EEPROM bytes sent from the addressed SlaveÕs most
recent pointed-to memory location incremented by 1)

¥ Non-acknowledge bit (Master)

¥ STOP condition (Master)

Note: The Master signals a non-acknowledge and STOP condition to terminate data
exchange with the Slave EEPROM, as illustrated in Figure 3.

The RANDOM READ mode is begun with a dummy byte write cycle (Master
sends a START condition followed by the device address and target word
address) followed by a CURRENT ADDRESS READ mode cycle as described
previously (Figure 4).

Figure 3. Current Address Read Operation

start

lsbmsb

SDA Line

Device Address

ackr/w

read stop

Data

no
ack
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I

2

C Bus Master

9

The SEQUENTIAL READ mode is initiated with either a Current Address Read or
Random Read. Instead of the Master terminating the read after a single byte
exchange (with a non-acknowledge), the Master responds with a valid acknowl-
edge after each received data byte. This acknowledge instructs the Slave
EEPROM to continue the read operation and transmit out the next data byte.
Sequential reads continue until terminated by the Master via issuance of a non-
acknowledge on the most recent byte read followed by the STOP condition
(Figure 5).

Z8 MCU Interface to 24Cxxx EEPROM

Figure 6 illustrates the hardware interface between the Z8 MCU and a 24Cxxx
EEPROM. The Write Protect (WP) input is tied to logic ground so that the MCU
may write the EEPROM. Address line A0, A1, and A2 are also tied to logic ground.

Note: An external pull-up is required on the SDA line (open-drain output).

Figure 4. Random Read Operation

Figure 5. Sequential Read Operation

write

*

Device Address Word Address
start

Device Address
read stop

Data

Dummy Write

SDA
Line

start

msb lsb r/w ack ack ack
no
ack

lsb ackr/w

read

Device Address

SDA Line

Data (n bytes)

no
ack

ack

stop

Data (n th byte)
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I

2

C Bus Master

10
The program listed in the Technical Support section allows the writing/reading of
an EEPROM in the stand-alone mode illustrated in Figure 6. The actual EEPROM
write/read modules are easily exported for use in any user application. The Z8
MCU was clocked at 8 MHz for this sample code. The user is advised to ensure
that the selected EEPROM set-up and hold times are met at the applicationÕs Z8
clock frequency.

Summary
Many MCU applications require specialty peripheral functions, such as multi-
channel high precision Analog-to-Digital or Digital- to-Analog converters, scratch-
pad EEPROM memory, or display drivers. Often these system peripheral require-
ments can be met more cost effectively by using components external to the
MCU. These external peripherals often use a simple two-wire communication
busÑthe I2C bus. This application note provided an overview of the I2C bus and
transportable I2C bus read and write modules for the Z8 MCU (MASTER mode).
Use of these Z8 I2C bus code modules was demonstrated with an example inter-
facing the Z8 MCU (in MASTER mode) with a 24Cxxx family EEPROM (in Slave
mode).

Figure 6. Generic Z8 MCU 24Cxxx Interface

A0

A1

GND

A2

Vcc

WP

SCL

SDA

GND

Vcc
Vcc

GND

GND

GND

Vcc

XTAL1

XTAL2

User clock source
(XTAL, RC, etc)

10K

24CxxxZ8 CCP MCU

P24

P25

Vcc
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

11
Technical Support

Source Code
**
* Module Name: I2C.asm
* Version: V1.0
* Copyright: ZiLOG (c)1999
* Date: August 23, 1999
* Created by: Jon Veres - ZiLOG Ohio
* Compiler: ZDS V2.11
* Description: A stand-alone program that demonstrates the
* generic Z8 MCU to 24Cxxx interface modules. The
* Z8 supports EEPROM page write/page read operations
* (page size of 1-16 bytes). In this example, the data
* stored in register file bank 40h (the designated I2C
* transmit buffer) is written to the first 16 bytes of
* the EEPROM in a single 16-byte page write operation.
* This EEPROM data is then read back 8 bytes at a time,
* and stored in register file bank 50h (designated I2C
* receive buffer). The data is read using two EEPROM
* read techniques. The first 8 bytes are read using the
* RANDOM ADDRESS SEQUENTIAL READ mode, while the next 8
* bytes are read using the SEQUENTIAL CURRENT ADDRESS
* READ mode.
**
;
; tab size = 6
;
; Z86xxx MCU I/O definition:
;
; - P2.4 = 24Cxxx serial data (SDA) I/O pin
; - P2.3 = 24Cxxx serial clock (SCL) pin
;
; For this sample program, EEPROM set-up/hold time between SCLK and SDA
; changes is a minimum of 12 Z8 sclks. User is cautioned to check timing
; of the actual EEPROM used for exact requirements relative to the actual
; Z8 clock speed selected.
;
; This program uses a Z8 external clock frequency of 8 MHz (standard mode
; oscillator) and a 24CXXX device with maximum SCLK frequency of 100KHz @
; 2.5v.
;
;

globals on
;
**
* EEPROM interface mask equates
**
;
EE_START equ 00h ; EEPROM start address (00h)
XRAM_START equ 40h ; bank 4 = I2C xmit buffer
RRAM_START equ 50h ; bank 5 = I2C rec buffer
RRAM_START1 equ 58h ; bank 5 = I2C rec buffer (MID)
SDA_HI equ 10h ; EEPROM data bit hi - (P24)
SDA_LO equ 0EFh ; EEPROM data bit lo - (P24)
SCLK_HI equ 08h ; EEPROM clk bit hi - (P23)
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

12
SCLK_LO equ 0F7h ; EEPROM clk bit lo - (P23)
NUMBER_8 equ 08h ; #bytes to page rd (8 byte page)
NUMBER_16 equ 10h ; #bytes to page wr (16 byte page)
WR_CNTRL0 equ 0A0h ; address/page 0 EEPROM wr control
;
;
; NOTE: The SDA_xx AND SCLK_xx equates reflect the use of Z8 I/O p24 and
; p23. If different I/O pins are used, the equates must be changed
; to reflect the new I/O port bit selections.
;
;

define bank6_data, space=rfile, org=60h ; mapped to 60-6F
;

segment bank6_data
;
; register bank 6 used for I2C control registers (direct address mode)
;
DATA ds 1 ; serial I/O data holding register
VALUE ds 1 ; data out/compare register
TEMP ds 1 ; general purpose temp reg
BIT_CNT ds 1 ; serial transfer bit loop counter
ACK_CNT ds 1 ; EEPROM wr ack polling counter
EE_PTR ds 1 ; byte address pointer to EEPROM
RAM_PTR ds 1 ; address pointer to z8 register file
DEV_ADDR ds 1 ; 24C01 Ax/Px device address/control byte
OLD_P2M ds 1 ; p2m image register
BYTE_CNT ds 1 ; byte count for EEPROM page transfers
;
;
**
* Interrupt Vectors
**

vector reset = begin
vector irq0 = IRQ0
vector irq1 = IRQ1
vector irq2 = IRQ2
vector irq3 = IRQ3
vector irq4 = IRQ4
vector irq5 = IRQ5

;
segment code

;
; start of program
;
**
* system initialization
**
;
begin: di ; program start location
 ld p01m, #04h ; set for int stack, p0=outputs
 ld p3m, #01h ; p2 outputs are push-pull
 ld p2, #0FFh ; init p2 outputs hi xxx1 1xxx)
 ld OLD_P2M, #00h ; p2m image reg (xxx0 0xxx)
 ld p2m, OLD_P2M ; p2 = outputs (xxx0 0xxx)
 ld spl, #80h ; initialize top of stack
;
; the minimum system initialization code for this application is complete.
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

13
;
**
* ee_wr: The following instructions perform the EEPROM write
* operation. Three pointers and a transfer count must be set-
* up by the user prior to calling the pg_wr subroutine:
*
* - DEV_ADDR = 24Cxx Ax/Px address with the R/W bit reset to 0,
* - EE_PTR = Target EEPROM address ptr to start data storage at,
* - RAM_PTR = Z8 reg file buffer ptr to start data storage from,
* - BYTE_CNT = # bytes to xfer (1 to max page buffer number).
*
* In this example, the data stored in register file locations 40h-
* 4Fh (the defined I2C transmit buffer) is read out and written to
* EEPROM locations 00h-0Fh of bank 0 (a 16 byte page write).
**
;
ee_wr: ld DEV_ADDR, #WR_CNTRL0 ; init EEPROM addr/page/wr bits
 ld EE_PTR, #EE_START ; init EEPROM byte address ptr
 ld RAM_PTR, #XRAM_START ; init write buffer pointer
 ld BYTE_CNT, #NUMBER_16 ; init EEPROM page xfer count
 call pg_wr ; write "NUMBER" of bytes to
 ; EEPROM
;
; EEPROM write is complete and the non-volatile array is being updated -
; completion of this EEPROM storage cycle is validated by the wr_poll
; command sequence prior to the next read or write operation.
;
**
* ee_rd: The following instructions perform the EEPROM random address
* sequential read operation. Three pointers and a transfer
* count must be set-up by the user prior to calling the pg_rd
* subroutine:
*
* - DEV_ADDR = 24Cxx Ax/Px address with the R/W bit reset to 0,
* - EE_PTR = Target EEPROM address ptr to start data storage at,
* - RAM_PTR = Z8 reg file buffer ptr to start data storage from,
* - BYTE_CNT = # bytes to xfer (1 to max page buffer number).
*
* The above four bytes are required for a random read (BYTE_CNT =1)
* and a random sequential read (BYTE_CNT >1). The EEPROM read is
* accomplished by calling the pg_rd routine.
*
* In this example, EEPROM addresses 00h-07h are read out and stored
* to register file locations (50h-57h -- the first half of the I2C
* receive buffer).
*
* For a current address read or a current address sequential read,
* the EE_PTR register is not used. This type of EEPROM read is
* executed by calling the pg_rd1 routine - see ee_rd1.
**
;
ee_rd: ld DEV_ADDR, #WR_CNTRL0 ; init EEPROM addr/page/wr bits
 ld EE_PTR, #EE_START ; init EEPROM byte address ptr
 ld RAM_PTR, #RRAM_START ; init read buffer pointer
 ld BYTE_CNT, #NUMBER_8 ; init EEPROM seq xfer byte cntr
 call pg_rd ; read "NUMBER" of bytes from
 ; EEPROM
;

AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

14
;
**
* ee_rd1: The following instructions perform the current address
* sequential read operation. Two pointers and a transfer count
* must be set-up by the user prior to calling the pg_rd1
* subroutine:
*
* - DEV_ADDR = 24Cxx Ax/Px address with the R/W bit reset to 0,
* - RAM_PTR = Z8 reg file buffer ptr to start data storage from,
* - BYTE_CNT = # bytes to xfer (1 to max page buffer number).
*
* For a current address read or a current address sequential read,
* the EE_PTR register is not used (the internal EEPROM address
* pointer is used). This type of EEPROM read is executed by calling
* the pg_rd1 routine.
*
* In this example, EEPROM addresses 08h-0Fh are read out and stored
* to register file locations (58h-5Fh -- the second half of the I2C
* receive buffer).
**
;
ee_rd1: ld DEV_ADDR, #WR_CNTRL0 ; init EEPROM addr/page/wr bits
 ld RAM_PTR, #RRAM_START1 ; init read buffer pointer
 ld BYTE_CNT, #NUMBER_8 ; init EEPROM seq xfer byte cntr
 call pg_rd1 ; read "NUMBER" of bytes from

; EEPROM
;
; test that the EEPROM data written equals the data read back
;
verify: ld RAM_PTR, #XRAM_START ; ptr to xmit buffer start
 ld EE_PTR, #RRAM_START ; ptr to receive buffer start
 ld BYTE_CNT, #NUMBER_16
ver_1: ld DATA, @RAM_PTR ; get xmit data byte
 cp DATA, @EE_PTR ; compare to EEPROM data read
 jp ne, ee_err
 inc RAM_PTR ; advance ptrs for next byte
 inc EE_PTR
 dec BYTE_CNT ; test for all bytes checked
 jr nz, ver_1
;
done: jr done ; EEPROM write/read complete
;
;
**
* The following routines perform the actual EEPROM byte write, page write,
* random read, current address read, and sequential read once the above
* described parameters are passed.
**
;
**
* PG_WR: This routine writes a page of data (length controlled by
* reg BYTE_CNT) using the EEPROMs page write feature. A byte write
* accomplished by setting BYTE_CNT = 1.
**
;
pg_wr: call wr_poll ; verify EEPROM ready,

; send start, wr command
 ld DATA, EE_PTR ; EEPROM wr byte address
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

15
 call outbyt ; send write address byte
 call rec_ack ; search for EEPROM ack command
 jp c, ee_err ; CF=1, no EEPROM ack received
pg_wr1: ld DATA, @RAM_PTR ; get data to wr to EEPROM
 call outbyt ; SEND WRITE DATA
 call rec_ack ; search for EEPROM ack command
 jp c, ee_err ; CF=1, no EEPROM ack received
 inc RAM_PTR ; inc for next reg file byte
 dec BYTE_CNT ; test for all bytes written
 jr nz, pg_wr1
 call stop ; page write complete,send stop
 ret ; to initiate EEPROM store cycle
;
**
* pg_rd: This routine reads a block of data (length controlled by
* reg BYTE_CNT) by using the EEPROMs sequential read feature.
* A single byte read is accomplished by setting BYTE_CNT = 1.
**
;
pg_rd: call wr_poll ; verify EEPROM ready,

; send start, wr command
 ld DATA, EE_PTR ; EEPROM W/R start address
 call outbyt ; send write data
 call rec_ack ; search for EEPROM ack command
 jp c, ee_err ; CF=1, no EEPROM ack received
;
; the "dummy" write is complete - proceed with read address parameters
;
; NOTE: This is also the start point for a current address read operation.
; User must insure that a EEPROM write cycle is not pending when a current
; read operation is initiated directly.
;
pg_rd1: call start ; send the start command
 or DEV_ADDR, #01h ; set R/W bit = 1, read command
 ld DATA, DEV_ADDR ; setup EEPROM read control
 call outbyt ; send data
 call rec_ack ; search for EEPROM ack command
 jp c, ee_err ; CF = 1, no EEPROM ack received
pg_rd2: call inbyt ; read byte from EEPROM
 ld @RAM_PTR, DATA ; store EEPROM data to reg file
 dec BYTE_CNT ; dec cnt, is page read complete
 jr z, pg_rd3
 call ack ; send the page read byte ack
 inc RAM_PTR
 jr pg_rd2
;
pg_rd3: call nack ; page read done, issue nack,
 call stop ; issue stop to finish exchange
 ret
;
**
* inbyt: Shift in 8 bits from the EEPROM to the data register.
**
;
inbyt: or OLD_P2M, #SDA_HI ; change SDA to an input
 ld p2m, OLD_P2M ; update p2m
 ld BIT_CNT, #08h ; load up for 8 shift times
in_1: call clock ; clock the data
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

16
 rlc DATA ; build serial data from EEPROM
 dec BIT_CNT ; loop for 8 bit times
 jr nz, in_1
 and OLD_P2M, #SDA_LO ; change SDA to an output
 ld p2m, OLD_P2M ; update P2M
 ret
;
**
* outbyt: Shift out 8 bits from the data register to the EEPROM.
**
;
outbyt: ld BIT_CNT, #08H ; load up for 8 shift times
out_1: rlc DATA ; rotate to xmit into CF
 jr c, out_2 ; send carry state to SDA
 and p2, #SDA_LO ; write 0 to SDA
 jr out_3
out_2: or p2, #SDA_HI ; write 1 to SDA
out_3: call clock ; clock out this data bit
 dec BIT_CNT ; loop till all 8 bits sent
 jr nz, out_1
 ret
;
**
* rec_ack: Test for the EEPROM receive acknowledge (result in CF).
**
;
rec_ack: or OLD_P2M, #SDA_HI ; change SDA to an input
 ld p2m, OLD_P2M ; update p2m
 or p2, #SDA_HI
 call clock ; generate a clock pulse
 and OLD_P2M, #SDA_LO ; change SDA to an ouptut
 ld p2m, OLD_P2M ; update p2m
 ret
;
**
* wr_poll: Poll the EEPROM to determine when the actual NV write
* cycle is complete. The routine tests 256 times for
* a valid EEPROM ack which is indicated by a reset CF upon
* return.
**
;
wr_poll: ld ACK_CNT, #00h ; max # of times to poll = 256
wr_poll1: dec ACK_CNT
 jr z, wr_poll2
 call start ; set-up to access EEPROM
 ld DATA, DEV_ADDR ; set-up EEPROM address/page
 call outbyt ; send write data
 call rec_ack ; search for EEPROM ack command
 jr C, wr_poll1 ; re-test if no ack received
 ret
;
wr_poll2: call start ; issue a start command
 call stop ; issue a stop/low pwr command
 jp ee_err ; no EEPROM ack rec'd
;
**
* start: Issue a start command
**
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

17
;
start: or p2, #SDA_HI ; send start - SDA set to 1
 nop ; hold time
 nop
 or p2, #SCLK_HI ; set clock output high
 nop ; give set-up time
 nop
 and p2, #SDA_LO ; reset SDA to 0
 nop ; hold time
 nop
 and P2, #SCLK_LO ; set clock output high
 ret
;
**
* stop: Issue a stop command
**
;
stop: and p2, #SDA_LO ; write SDA to 0,stop condition
 nop ; hold time
 nop
 or p2, #SCLK_HI ; set clock output hi
 nop ; give set-up time
 nop
 or p2, #SDA_HI ; write SDA to 1
 ret
;
**
* ack: Issue a ack - continue a page read
**
;
ack: and p2, #SDA_LO ; reset SDA to 0
 call clock ; generate a clock pulse
 ret
;
**
* nack: Issue a nack - terminate a byte read.
**
;
nack: or p2, #SDA_HI ; set SDA to 1
 call clock ; generate a clock pulse
 ret
;
**
* clock: Issue a clock pulse - SDA level stored in carry flag.
**
;
clock: or p2, #SCLK_HI ; set the clock line hi
 scf ; init CF = no EEPROM ack, with
 nop ; set-up time before bit read
 tm p2, #SDA_HI ; test SDA input for a logic 0
 jr nz, clock_1 ; jp if SDA hi,no EEPROM ack

rcf ; EEPROM ack recv'd, reset CF
clock_1: and p2, #SCLK_LO ; reset clock line lo

ret
;
**
* ee_err: This routine performs the system shutdown procedure when
* the EEPROM does not respond to a write/read request.
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

18
**
;
ee_err: jp ee_err ; put your error handler here
;
**
* Interrupt Service
**
;

IRQ0:
IRQ1:
IRQ2:
IRQ3:
IRQ4:
IRQ5:

;
jp begin

;
 .END
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

19
Flowcharts

Figure 7. Z8 MCU 24Cxxx Interface: WR_POLL Subroutine

Set-up the wr_poll loop
counter (ack_cnt)

decr wr poll counter

Issue start command

Issue start, stop command

EE_ERROR

Load EEPROM page/R-W
control byte to xmit shift reg

Xmit shift reg byte

 Valid EEPROM
 ack detected ?

wr poll
 count = 0 ?

return

WR_POLL

Y

N

Y

N

AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

20
Figure 8. Z8 MCU 24Cxxx Interface: OUTBYT Subroutine

Decr the xmit shift count

Issue a clock (CLOCK)

OUTBYT

Initialize the xmit (byte
write) shift count to 8

Xmit (write) out the
MSB of the xmit output
buffer to the SDA pin

Shift the xmit
output buffer byte

return

 Xmit shift
 count = 0 ?

Y

N

AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

21
Figure 9. Z8 MCU 24Cxxx Iterface: INBYT Subroutine

INBYT

Configure serial data
line to be an input

Load receive register
bit counter with 8

Issue a clock

Read each data bit in and
build byte in receive register

All data bits of byte read ?

Configure serial data
line as an output

return

Y

N

AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

22
Figure 10. Z8 MCU 24Cxxx Interface: START/STOP Subroutines

Delay for set-up time

Set the serial clock
output high

Set serial data output high

START

Delay for hold time

Delay for set-up time

Reset the serial clock
output low

return

STOP

Reset serial data output low

Reset serial data output low

Delay for set-up time

Set the serial clock
output high

Delay for hold time

Set serial data output high

return
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

23
Test Procedure

Equipment Used

Testing the Z8 I2C Bus Master demonstration program requires the following:

¥ Windows 95/98/NT-based PC with ZDS 2.11 installed

¥ Z8601ZEM

¥ Z8600ZAC

¥ 8V power supply

¥ Tektronix Scopemeter (only nrequired to view serial data stream if desired)

¥ Target test board with Z8 connections to target EEPROM (24LC04B)

General Test Setup and Execution

Testing was performed with ZDS 2.1, using the Z86C04 as the target chip. The
18-pin emulator target cable is connected from the emulator to the target
EEPROM board (pin 1 of emulator cable to pin1, row F of the target board). The
target EEPROM board is wired as illustrated in Figure 6. Specific Z8 MCU pin
numbers are not provided because this code works on any Z8.

ZDS 2.11 is used to assemble the source program (I 2C.asm) and monitor the
Z86C04 register file memory windows. The Z8 write buffer is at locations 40h -
4Fh while the read buffer is at locations 50h-5Fh . Data to be stored to the
EEPROM is entered into the write buffer area via the Z8 register file watch win-
dow. The data read out of the EEPROM is stored in the read buffer and monitored
via the Z8 register file watch window. In the demonstration program, the first 16
bytes of the EEPROM are exercised.

To run and verify the demo program, enter the data to be written to EEPROM (as
detailed above) and set a breakpoint at the done and ee_err program labels.
Then issue the RESET+GO command. The program breaks at the done label if
working correctly.

Different areas of the EEPROM can be written by varying the EE_START value
(starting address in the selected memory page) and WR_CNTRL0 (memory page
selected).

To read the EEPROM without first writing (EEPROM data retention checking),
start program instruction execution at the ee_rd label. To read after an emulator
power-up or RESET command, execute the system initialization instructions prior
to starting execution at the ee_rd label. One way to execute these initialization
instructions is to single step from the begin label to the ee_wr label (another way
is to set a breakpoint at label ee_wr and then perform a RESET+GO command).
AN003601-Z8X1199

Application Note
Using the Z8 MCU as an I2C Bus Master

24
When at the ee_wr label, place the cursor at the ee_rd label and execute the
JUMP TO CURSOR command. The read now can be performed by executing
from ee_rd.

Test Results

The program works as specified and allows the I2C Master Z8 MCU to write/read
all pages/locations in the Slave EEPROM. device.

References
¥ Atmel Nonvolatile Memory Data Book, Atmel Corporation, 1996.

¥ I2C Bus Specifications, Philips Semiconductors Microcontroller Data
Handbook, 1996.
AN003601-Z8X1199

	Using the Z8 MCU as an I2C Bus Master
	Acknowledgements
	General Overview
	Discussion
	I2C Bus Overview
	24Cxxx Serial EEPROM Overview
	Z8 MCU Interface to 24Cxxx EEPROM

	Summary
	Technical Support
	Source Code
	Flowcharts

	Test Procedure
	Equipment Used
	General Test Setup and Execution
	Test Results

	References

